AIO-3288J 四核Cortex-A17高性能主板 立即购买 产品规格书

采用RK3288四核Cortex-A17处理器,主频高达1.8GHz,集成四核Mali-T764 GPU,性能优异。板载4G LTE扩展接口、多种显示接口和通信串口。支持Android/Linux/Ubuntu系统,开放源代码方便企业二次开发。AIO-3288J的高性能、高可靠性、高扩展性,多系统等优势,让其可以快速应用于各种行业中。

GPIO 使用

更新时间:2018-07-17 阅读:1987

1 简介

GPIO, 全称 General-Purpose Input/Output(通用输入输出),是一种软件运行期间能够动态配置和控制的通用引脚。

AIO-3288J 有 9 组 GPIO bank: GPIO0,GPIO1, ..., GPIO8。每组又以 A0~A7, B0~B7, C0~C7, D0~D7 作为编号区分(不是所有 bank 都有全部编号,例如 GPIO5 就只有 B0~B7, C0~C3)。

每个 GPIO 口除了通用输入输出功能外,还可能有其它复用功能,例如 GPIO5_B4,可以复用成以下功能之一:

  • spi0_clk

  • ts0_data4

  • uart4exp_ctsn

每个 GPIO 口的驱动电流、上下拉和重置后的初始状态都不尽相同,详细情况请参考《AIO-3288J规格书》中的 "AIO-3288J function IO description" 一章。

AIO-3288J 的 GPIO 驱动是在以下 pinctrl 文件中实现的:

kernel/drivers/pinctrl/pinctrl-rockchip.c

其核心是填充 GPIO bank 的方法和参数,并调用 gpiochip_add 注册到内核中。

2 使用

开发板有两个电源 LED 灯是 GPIO 口控制的,分别是:

Rk3288 leds schematic.png

从电路图上看,GPIO 口输出低电平时灯亮,高电平时灯灭。

另外,扩展槽上引出了几个空闲的 GPIO 口,分别是:

Rk3288 gpios in extension.png

这几个 GPIO 口可以自定义作输入、输出使用。

2.1 输入输出

下面以电源 LED 灯的驱动为例,讲述如何在内核编写代码控制 GPIO 口的输出。

首先需要在 dts (Device Tree) 文件 firefly-rk3288-aio-3288j.dts 中增加驱动的资源描述:

firefly-led{
       compatible = "firefly,led";
       led-work = ;
       led-power = ;
       status = "okay";
  };

这里定义了两颗 LED 灯的 GPIO 设置:

led-work  GPIO8_A2  GPIO_ACTIVE_LOW
led-power GPIO8_A1  GPIO_ACTIVE_LOW

GPIO_ACTIVE_LOW 表示低电平有效(灯亮),如果是高电平有效,需要替换为 GPIO_ACTIVE_HIGH 。

之后在驱动程序中加入对 GPIO 口的申请和控制则可:


static int firefly_led_probe(struct platform_device *pdev){
int ret = -1;
int gpio, flag;
struct device_node *led_node = pdev->dev.of_node;   
gpio = of_get_named_gpio_flags(led_node, "led-power", 0, &flag);
if (!gpio_is_valid(gpio)){
        printk("invalid led-power: %d\n",gpio);
        return -1;
        } 
if (gpio_request(gpio, "led_power")) {
        printk("gpio %d request failed!\n",gpio);
        return ret;
        }
    led_info.power_gpio = gpio;
    led_info.power_enable_value = (flag == OF_GPIO_ACTIVE_LOW) ? 0 : 1;
    gpio_direction_output(led_info.power_gpio, !(led_info.power_enable_value));
    ...
    on_error:gpio_free(gpio);
}


of_get_named_gpio_flags 从设备树中读取 led-power 的 GPIO 配置编号和标志,gpio_is_valid 判断该 GPIO 编号是否有效,gpio_request 则申请占用该 GPIO。如果初始化过程出错,需要调用 gpio_free 来释放之前申请过且成功的 GPIO 。

调用 gpio_direction_output 就可以设置输出高还是低电平,因为是 GPIO_ACTIVE_LOW ,如果要灯亮,需要写入 0 。

实际中如果要读出 GPIO,需要先设置成输入模式,然后再读取值:

int val;
gpio_direction_input(your_gpio);
val = gpio_get_value(your_gpio);

下面是常用的 GPIO API 定义:

#include #include  
enum of_gpio_flags {OF_GPIO_ACTIVE_LOW = 0x1,}; 
int of_get_named_gpio_flags(struct device_node *np, const char *propname,int index, enum of_gpio_flags *flags); 
int gpio_is_valid(int gpio);
int gpio_request(unsigned gpio, const char *label); 
void gpio_free(unsigned gpio); 
int gpio_direction_input(int gpio); 
int gpio_direction_output(int gpio, int v)

2.2 复用

如何定义 GPIO 有哪些功能可以复用,在运行时又如何切换功能呢?以 I2C4 为例作简单的介绍。

查规格表可知,I2C4_SDA 与 I2C4_SCL 的功能定义如下:

Pad# func0 func1
I2C4_SDA/GPIO7_C1 gpio7c1 i2c4tp_sda
I2C4_SCL/GPIO7_C2 gpio7c2 i2c4tp_scl

在 /kernel/arch/arm/boot/dts/rk3288.dtsi 里有:

i2c4: i2c@ff160000 {
	compatible = "rockchip,rk30-i2c";
	reg = ;
	interrupts = ;
	#address-cells = ;
	#size-cells = ;
	pinctrl-names = "default", "gpio";
	pinctrl-0 = ;
	pinctrl-1 = ;
	gpios = , ;
	clocks = ;
	rockchip,check-idle = ;
	status = "disabled";
};

此处,跟复用控制相关的是 pinctrl- 开头的属性:

  • pinctrl-names 定义了状态名称列表: default (i2c 功能) 和 gpio 两种状态。

  • pinctrl-0 定义了状态 0 (即 default)时需要设置的 pinctrl: i2c4_sda 和 i2c4_scl

  • pinctrl-1 定义了状态 1 (即 gpio)时需要设置的 pinctrl: i2c4_gpio

这些 pinctrl 在 /kernel/arch/arm/boot/dts/rk3288-pinctrl.dtsi 中定义:

/ { 
	 pinctrl: pinctrl@ff770000 {
	compatible = "rockchip,rk3288-pinctrl";
		...		
	gpio7_i2c4 {
		i2c4_sda:i2c4-sda {
			rockchip,pins = ;
			rockchip,pull = ;
			rockchip,drive = ;
			//rockchip,tristate = ;
		};
		i2c4_scl:i2c4-scl {
			rockchip,pins = ;
			rockchip,pull = ;
			rockchip,drive = ;
			//rockchip,tristate = ;
		};
		i2c4_gpio: i2c4-gpio {
			rockchip,pins = , ;
			rockchip,drive = ;
		};
	   };
		...
	}
  }

I2C4TP_SDA, I2C4TP_SCL 的定义在 /kernel/arch/arm/boot/dts/include/dt-bindings/pinctrl/rockchip-rk3288.h 中:

#define GPIO7_C1 0x7c10
#define I2C4TP_SDA 0x7c11 
#define GPIO7_C2 0x7c20
#define I2C4TP_SCL 0x7c21

FUN_TO_GPIO 的定义在 /kernel/arch/arm/boot/dts/include/dt-bindings/pinctrl/rockchip.h 中:

#define FUNC_TO_GPIO(m)		((m) & 0xfff0)

也就是说 FUNC_TO_GPIO(I2C4TP_SDA) == GPIO7_C1, FUNC_TO_GPIO(I2C4TP_SCL) == GPIO7_C2 。

像 0x7c11 这样的值是有编码规则的:

7 c1 1
| |  `- func
| `---- offset
`------ bank
0x7c11 就表示 GPIO7_C1 func1, 即 i2c4tp_sda 。

在复用时,如果选择了 "default" (即 i2c 功能),系统会应用 i2c4_sda 和 i2c4_scl 这两个 pinctrl,最终得将 GPIO7_C1 和 GPIO7_C2 两个针脚切换成对应的 i2c 功能;而如果选择了 "gpio" ,系统会应用 i2c4_gpio 这个 pinctrl,将 GPIO7_C1 和 GPIO7_C2 两个针脚还原为 GPIO 功能。

我们看看 i2c 的驱动程序 /kernel/drivers/i2c/busses/i2c-rockchip.c 是如何切换复用功能的:

static int rockchip_i2c_probe(struct platform_device *pdev){
        struct rockchip_i2c *i2c = NULL;
        struct resource *res;
        struct device_node *np = pdev->dev.of_node;
        int ret;
// ...
	i2c->sda_gpio = of_get_gpio(np, 0);
	if (!gpio_is_valid(i2c->sda_gpio)) {
			dev_err(&pdev->dev, "sda gpio is invalid\n");
			return -EINVAL;
	}
	ret = devm_gpio_request(&pdev->dev, i2c->sda_gpio, dev_name(&i2c->adap.dev));
	if (ret) {
		dev_err(&pdev->dev, "failed to request sda gpio\n");
		return ret;
	}
	i2c->scl_gpio = of_get_gpio(np, 1);
	if (!gpio_is_valid(i2c->scl_gpio)) {
		dev_err(&pdev->dev, "scl gpio is invalid\n");
		return -EINVAL;
	}
	ret = devm_gpio_request(&pdev->dev, i2c->scl_gpio, dev_name(&i2c->adap.dev));
	if (ret) {
		dev_err(&pdev->dev, "failed to request scl gpio\n");
		return ret;
	}
	i2c->gpio_state = pinctrl_lookup_state(i2c->dev->pins->p, "gpio");
	if (IS_ERR(i2c->gpio_state)) {
		dev_err(&pdev->dev, "no gpio pinctrl state\n");
		return PTR_ERR(i2c->gpio_state);
	}
	pinctrl_select_state(i2c->dev->pins->p, i2c->gpio_state);
	gpio_direction_input(i2c->sda_gpio);
	gpio_direction_input(i2c->scl_gpio);
	pinctrl_select_state(i2c->dev->pins->p, i2c->dev->pins->default_state);
// ...
}

首先是调用 of_get_gpio 取出设备树中 i2c4 结点的 gpios 属于所定义的两个 gpio:

gpios = , ;

然后是调用 devm_gpio_request 来申请 gpio,接着是调用 pinctrl_lookup_state 来查找 “gpio” 状态,而默认状态 "default" 已经由框架保存到 i2c->dev-pins->default_state 中了。

最后调用 pinctrl_select_state 来选择是 "default" 还是 "gpio" 功能。

下面是常用的复用 API 定义:

#include  
struct device {
    //...
    #ifdef 
    CONFIG_PINCTRLstruct dev_pin_info    *pins;
    #endif
    //...
};
 struct dev_pin_info {
     struct pinctrl *p;
     struct pinctrl_state *default_state;
     #ifdef CONFIG_PMstruct pinctrl_state *sleep_state;
     struct pinctrl_state *idle_state;
     #endif
 };
  struct pinctrl_state * pinctrl_lookup_state(struct pinctrl *p, const char *name);
  int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *s);