Chapter 38 SAR-ADC

38.1 Overview

38.1.1 Features

The ADC is a4-channel (0/1/2/6) signal-ended 10-bit Successive Approximation Register (SAR) A/D Converter. It uses the supply and ground as it reference which avoid use of any external reference. It converts the analog input signal into 10-bit binary digital codes at maximum conversion rate of 100KSPS with 1MHz A/D converter clock.

38.2 Block Diagram

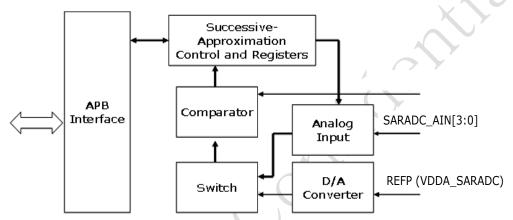


Fig.38-1RKAudiSAR-ADC block diagram

Successive-Approximate Register and Control Logic Block

This block is exploited to realize binary search algorithm, storing the intermediate result and generate control signal for analog block.

Comparator Block

This block compares the analog input SARADC_AIN[3:0] with the voltage generated from D/A Converter, and output the comparison result to SAR and Control Logic Block for binary search. Three level amplifiers are employed in this comparator to provide enough gain.

38.3 Function description

In RKAudi, SAR-ADC works at single-sample operation mode.

This mode is useful to sample an analog input when there is a gap between two samples to be converted. In this mode START is asserted only on the rising edge of CLKIN where conversion is needed. At the end of every conversion EOC signal is made high and valid output data is available at the rising edge of EOC. The detailed timing diagram will be shown in the following.

38.4 Register Description

This section describes the control/status registers of the design.

38.4.1 Registers Summary

Name	Offset		vallie	Description
SARADC_DATA	0x0000	W	0×00000000	This register contains the data after A/D Conversion.
SARADC_STAS	0x0004			The status register of A/D Converter.
SARADC_CTRL	0x0008			The control register of A/D Converter.
SARADC_DLY_PU_SOC	0x000c	W	0×00000000	delay between power up and start command

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

38.4.2 Detail Register Description

SARADC_DATA

Address: Operational Base + offset (0x0000)

This register contains the data after A/D Conversion.

Bit	Attr	Reset Value	Description
31:10	RO	0x0	reserved
9:0	RO	0x000	adc_data A/D value of the last conversion (DOUT[9:0]).

SARADC_STAS

Address: Operational Base + offset (0x0004)

The status register of A/D Converter.

Bit	Attr	Reset Value	Description
31:1	RO 🛝	0x0	reserved
0	RO		adc_status ADC status (EOC) 1'b0: ADC stop 1'b1: Conversion in progress

SARADC_CTRL

Address: Operational Base + offset (0x0008)

The control register of A/D Converter.

Bit	Attr	Reset Value	Description		
31:7	RO	0x0	reserved		
			int_status		
6	6 RW 0x0	0.0	Interrupt status.		
U		UXU	This bit will be set to 1 when endofconversion.		
			Set 0 to clear the interrupt.		

Bit	Attr	Reset Value	Description		
5	RW	0×0	int_en Interrupt enable. 1'b0: Disable 1'b1: Enable		
4	RO	0x0	reserved		
3	RW	0×0	adc_power_ctrl ADC power down control bit 1'b0: ADC power down 1'b1: ADC power up and reset start signal will be asserted (DLY_PU_SOC+2) sclk clock period later after power up		
2:0	RW	0×0	adc_input_src_sel ADC input source selection(CH_SEL[2:0]). 3'b000: Input source 0 (SARADC_AIN[0]) 3'b001: Input source 1 (SARADC_AIN[1]) 3'b010: Input source 2 (SARADC_AIN[2]) 3'b110: Input source 3 (SARADC_AIN[3]) Others: Reserved		

SARADC_DLY_PU_SOC

Address: Operational Base + offset (0x000c) delay between power up and start command

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5:0	RW	UXU8	DLY_PU_SOC delay between power up and start command The start signal will be asserted (DLY_PU_SOC + 2) sclk clock period later after power up

38.5 Timing Diagram

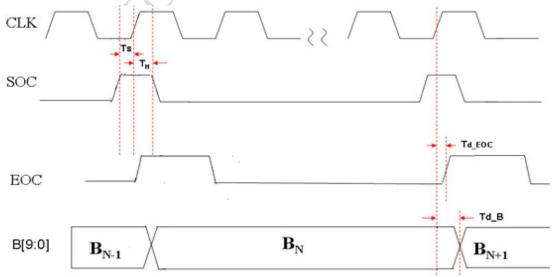


Fig.38-2SAR-ADC timing diagram in single-sample conversion mode

The following table has shows the detailed value for timing parameters in the

above diagram.

Table 38-1RKAudi SAR-ADC timing parameters list

Timing	Symbol	Value		Unit	Description	
		Min	Тур	Max		
Data Setup	T_{S}	0			ns	Setup time for SOC
Data Hold	T_{H}	10			ns	Hold time for SOC
EOC delay	T_{D_EOC}			10.9	ns	EOC delay from rising edge of
						CLK
Data delay	T_{d_B}			11.1	ns	B[9:0] delay from rising edge of
						CLK
CLK		90			ns	CLK period
period						

38.6 Application Notes

Steps of adc conversion:

- Write SARADC_CTRL[3] as 0 to power down adc converter.
- Write SARADC_CTRL[2:0] as n to select adc channel(n).
- Write SARADC_CTRL[5] as 1 to enable adc interrupt.
- Write SARADC CTRL[3] as 1 to power up adc converter.
- Wait for adc interrupt or poll SARADC_STAS register to assert whether the coversion is completed
- Read the conversion result from SARADC_DATA[9:0]

Note: The A/D converter was designed to operate at maximum 1MHZ.