Chapter 36 Pulse Width Modulation(PWM)

36.1 Overview

The pulse-width modulator (PWM) feature is very common in embedded systems. It provides a way to generate a pulse periodic waveform for motor control or can act as a digital-to-analog converter with some external components.

36.1.1 Features

The PWMModule supports the following features:

- 4-built-in PWM channels
- Configurable to operate in capture mode
 - Measures the high/low polarity effective cycles of this input waveform
 - Generates a single interrupt at the transition of input waveform polarity
 - 32-bit high polarity capture register
 - 32-bit low polarity capture register
 - 32-bit current value register
- Configurable to operate in continuous mode or one-shot mode
 - 32-bit period counter
 - 32-bit duty register
 - 32-bit current value register
 - Configurable PWM output polarity in inactive state and duty period pulse polarity
 - Period and duty cycle are shadow buffered. Change takes effect when the end of the effective period is reached or when the channel is disabled
 - Programmable center or left aligned outputs, and change takes effect when the end of the effective period is reached or when the channel is disabled
 - 8-bit repeat counter for one-shot operation. One-shot operation will produce N + 1 periods of the waveform, where N is the repeat counter value, and generates a single interrupt at the end of operation
 - Continuous mode generates the waveform continuously, and do not generates any interrupts
- pre-scaled operation to bus clock and then further scaled
- Available low-power mode to reduce power consumption when the channel is inactive.

36.2 Block Diagram

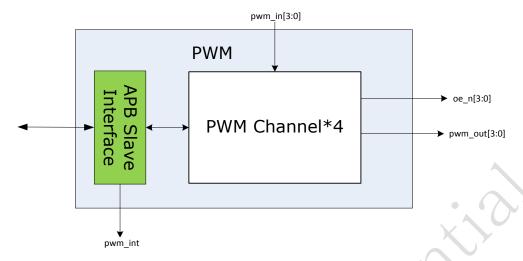


Fig.36-1PWM architecture

36.2.1 PWM APB Slave Interface

The host processor gets access to PWM Register Block through the APB slave interface with 32-bit bus width, and asserts the active-high level interrupt.

36.2.2 PWM Channels

This is the control logic of PWM module, and controls the operation of PWM module according to the configured working mode.

36.3 Function description

The PWM supports three operation modes: reference mode, one-shot mode and continuous mode. For the one-shot mode and the continuous mode, the PWM output can be configured as the left-aligned mode or the center-aligned mode.

36.3.1 Reference mode

The reference mode is used to measure the PWM channel input waveform high/low effective cycles with the PWM channel clock, and asserts an interrupt when the polarity of the input waveform changes. The number of the high effective cycles is recorded in the PWMx_PERIOD_HPC register, while the number of the low effective cycles is recorded in the PWMx_DUTY_LPC register.

Note: the PWM input waveform is doubled buffered when the PWM channel is working in order to filter unexpected shot-time polarity transition, and therefore the interrupt is asserted several cycles after the input waveform polarity changes, and so does the change of the values of PWMx_PERIOD_HPC and PWMx_DUTY_LPC.

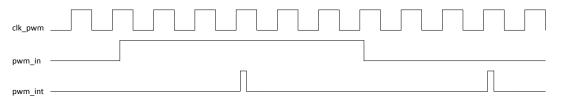


Fig.36-2PWM Reference Mode

36.3.2 Continuous Mode

The PWM channel generates a series of the pulsescontinuously asexpected once the channel is enabled with continuous mode.

In the continuous mode, the PWM output waveforms can be in one form of the two output mode: left-aligned mode or center-aligned mode.

For the left-aligned output mode, the PWM channel firstly starts the duty cycle with the configured duty polarity (PWMx_CTRL.duty_pol). Once duty cycle number (PWMx_DUTY_LPC) is reached, the output is switched to the opposite polarity. After the period number (PWMx_PERIOD_HPC) is reached, the output is again switched to the opposite polarity to start another period of desired pulse.

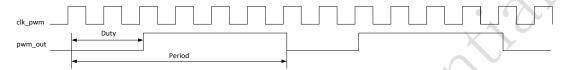


Fig.36-3PWM Left-aligned Output Mode

For the center-aligned output mode, the PWM channel firstly starts the duty cycle with the configured duty polarity (PWMx_CTRL.duty_pol). Once one half of duty cycle number (PWMx_DUTY_LPC) is reached, the output is switched to the opposite polarity. Then if there is one half of duty cycle left for the whole period , the output is again switched to the opposite polarity. Finally after the period number (PWMx_PERIOD_HPC) is reached, the output is again switched to the opposite polarity to start another period of desired pulse.

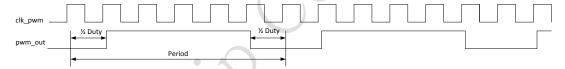


Fig.36-4PWM Center-aligned Output Mode

Disable the PWM channel, the channel stops generating the output waveforms and output polarity is fixed as the configured inactive polarity (PWMx_CTRL.inactive_pol).

36.3.3 One-shot Mode

Unlike the continuous mode, the PWM channel generates the output waveforms within the configured periods ($PWM_CTRL.rpt + 1$), and then stops. At the same times, an interrupt is asserted to inform that the operation has been finished.

There are also two output modes for the one-shot mode: the left-aligned mode and the center-aligned mode.

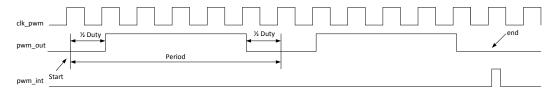


Fig.36-5PWM Center-aligned Output Mode

36.4 Register description

36.4.1 Register Summary

Name	Offset	Size	Reset Value	Description
PWM_PWM0_CNT	0x0000	W	0x00000000	PWM Channel 0 Counter Register
PWM_PWM0_PERIOD _HPR	0x0004	W	0x00000000	PWM Channel 0 Period Register/High Polarity Capture Register
PWM_PWM0_DUTY_L PR	0x0008	W	0x00000000	PWM Channel 0 Duty Register/Low Polarity Capture Register
PWM_PWM0_CTRL	0x000c	W	0×00000000	PWM Channel 0 Control Register
PWM_PWM1_CNT	0x0010	W	0×00000000	PWM Channel 1 Counter Register
PWM_PWM1_PERIOD _HPR	0x0014	w	0x00000000	PWM Channel 1 Period Register/High Polarity Capture Register
PWM_PWM1_DUTY_L PR	0x0018	W	0x00000000	PWM Channel 1 Duty Register/Low Polarity Capture Register
PWM_PWM1_CTRL	0x001c	W	0×00000000	PWM Channel 1 Control Register
PWM_PWM2_CNT	0x0020	W	0x00000000	PWM Channel 2 Counter Register
PWM_PWM2_PERIOD _HPR	0x0024	W	0x00000000	PWM Channel 2 Period Register/High Polarity Capture Register
PWM_PWM2_DUTY_L PR	0x0028	W	0x00000000	PWM Channel 2 Duty Register/Low Polarity Capture Register
PWM_PWM2_CTRL	0x002c	W	0×00000000	PWM Channel 2 Control Register
PWM_PWM3_CNT	0x0030	W	0x00000000	PWM Channel 3 Counter Register

Name	Offset	Size	Reset Value	Description
PWM_PWM3_PERIOD _HPR	0x0034	W	0x00000000	PWM Channel 3 Period Register/High Polarity Capture Register
PWM_PWM3_DUTY_L PR	0x0038	W	0x00000000	PWM Channel 3 Duty Register/Low Polarity Capture Register
PWM_PWM3_CTRL	0x003c	W	0×00000000	PWM Channel 3 Control Register
PWM_INTSTS	0x0040	W	0x00000000	Interrupt Status Register
PWM_INT_EN	0x0044	W	0x00000000	Interrupt Enable Register

Notes: Size: B- Byte (8 bits) access, HW- Half WORD (16 bits) access, W-WORD (32 bits) access

36.4.2 Detail Register Description

PWM_PWM0_CNT

Address: Operational Base + offset (0x0000)

PWM Channel 0 Counter Register

Bit	Attr	Reset Value	Description
31:0	RO	0×00000000	CNT Timer Counter The 32-bit indicates current value of PWM Channel 0 counter. The counter runs at the rate of PWM clock. The value ranges from 0 to (2^32-1).

PWM_PWM0_PERIOD_HPR

Address: Operational Base + offset (0x0004)

PWM Channel 0 Period Register/High Polarity Capture Register

Bit	Attr	Reset Value	Description
-----	------	-------------	-------------

Bit	Attr	Reset Value	Description
			PERIOD_LPR
			Output Waveform Period/Input Waveform High Polarity Cycle
31:0	RW	0×00000000	If PWM is operated at the continuous mode or one-shot mode, this value defines the period of the output waveform. Note that, if the PWM is operated at the center-aligned mode, the period should be an even one, and therefore only the bit [31:1] is taken into account and bit [0] always considered as 0.
			If PWM is operated at the capture mode, this value indicates the effective high polarity cycles of input waveform. This value is based on the PWM clock.
			The value ranges from 0 to (2^32-1).

PWM_PWM0_DUTY_LPR

Address: Operational Base + offset (0x0008)

PWM Channel 0 Duty Register/Low Polarity Capture Register

Bit	Attr	Reset Value	Description
		• . <	DUTY_LPR
			Output Waveform Duty Cycle/Input Waveform Low Polarity Cycle
31:0	RW	0×00000000	If PWM is operated at the continuous mode or one-shot mode, this value defines the duty cycle of the output waveform. The PWM starts the output waveform with duty cycle. Note that, if the PWM is operated at the center-aligned mode, the period should be an even one, and therefore only the [31:1] is taken into account.
		If PWM is operated at the capture mode, this value indicates the effective low polarity cycles of input waveform.	
			This value is based on the PWM clock. The value ranges from 0 to (2^32-1).

PWM_PWM0_CTRL

Address: Operational Base + offset (0x000c)

PWM Channel 0 Control Register

Bit	Attr	Reset Value	Description
			rpt
			Repeat Counter
31:24	RW	0×00	This field defines the repeated effective periods of output waveform in one-shot mode. The value N means N+1 repeated effective periods.
			scale
			Scale Factor
23:16	RW	0×00	This fields defines the scale factor applied to prescaled clock. The value N means the clock is divided by 2*N. If N is 0, it means that the clock is divided by 512(2*256).
15	RO	0x0	reserved
			prescale
			Prescale Factor
14:12	RW	0×0	This field defines the prescale factor applied to input clock. The value N means that the input clock is divided by 2^N.
11:10	RO	0x0	reserved
		•	clk_sel
			Clock Source Select
9	RW	0×0	0: non-scaled clock is selected as PWM clock source. It means that the prescale clock is directly used as the PWM clock source
	C		1: scaled clock is selected as PWM clock source
2			lp_en
			Low Power Mode Enable
			0: disabled
8	RW	0x0	1: enabled
			When PWM channel is inactive state and Low Power Mode is enabled, the path to PWM Clock prescale module is blocked to reduce power consumption.
7:6	RO	0x0	reserved

Bit	Attr	Reset Value	Description
5	RW	0×0	output_mode PWM Output mode 0: left aligned mode 1: center aligned mode
4	RW	0×0	inactive_pol Inactive State Output Polarity This defines the output waveform polarity when PWM channel is in inactive state. The inactive state means that PWM finishes the complete waveform in one-shot mode or PWM channel is disabled. 0: negative 1: positive
3	RW	0×0	duty_pol Duty Cycle Output Polarity This defines the polarity for duty cycle. PWM starts the output waveform with duty cycle. 0: negative 1: positive
2:1	RW	0×0	pwm_mode PWM Operation Mode 00: One shot mode. PWM produces the waveform within the repeated times defined by PWMx_CTRL_rpt. 01: Continuous mode. PWM produces the waveform continuously 10: Capture mode. PWM measures the cycles of high/low polarity of input waveform. 11: reserved
0	RW	0×0	pwm_en PWM channel enable 0: disabled 1: enabled. If the PWM is worked the one-shot mode, this bit will be cleared at the end of operation

PWM_PWM1_CNT

Address: Operational Base + offset (0x0010)

PWM Channel 1 Counter Register

Bit	Attr	Reset Value	Description
			CNT
			Timer Counter
31:0	RO	0×00000000	The 32-bit indicates current value of PWM Channel 1 counter. The counter runs at the rate of PWM clock.
			The value ranges from 0 to (2^32-1) .

PWM_PWM1_PERIOD_HPR

Address: Operational Base + offset (0x0014)

PWM Channel 1 Period Register/High Polarity Capture Register

Bit	Attr	Reset Value	Description
			PERIOD_LPR
			Output Waveform Period/Input Waveform High Polarity Cycle
31:0	RW	0×00000000	If PWM is operated at the continuous mode or one-shot mode, this value defines the period of the output waveform. Note that, if the PWM is operated at the center-aligned mode, the period should be an even one, and therefore only the bit [31:1] is taken into account and bit [0] always considered as 0.
2	0		If PWM is operated at the capture mode, this value indicates the effective high polarity cycles of input waveform.
			This value is based on the PWM clock. The value ranges from 0 to (2^32-1).

PWM_PWM1_DUTY_LPR

Address: Operational Base + offset (0x0018)

PWM Channel 1 Duty Register/Low Polarity Capture Register

Bit	Attr	Reset Value	Description
-----	------	-------------	-------------

Bit	Attr	Reset Value	Description
			DUTY_LPR
			Output Waveform Duty Cycle/Input Waveform Low Polarity Cycle
31:0	RW		If PWM is operated at the continuous mode or one-shot mode, this value defines the duty cycle of the output waveform. The PWM starts the output waveform with duty cycle. Note that, if the PWM is operated at the center-aligned mode, the period should be an even one, and therefore only the [31:1] is taken into account.
			If PWM is operated at the capture mode, this value indicates the effective low polarity cycles of input waveform.
			This value is based on the PWM clock. The value ranges from 0 to (2^32-1).

PWM_PWM1_CTRL

Address: Operational Base + offset (0x001c)

PWM Channel 1 Control Register

Bit	Attr	Reset Value	Description
			rpt
			Repeat Counter
31:24	RW	0×00	This field defines the repeated effective periods of output waveform in one-shot mode. The value N means N+1 repeated effective periods.
			scale
1			Scale Factor
23:16	RW	0×00	This fields defines the scale factor applied to prescaled clock. The value N means the clock is divided by 2*N. If N is 0, it means that the clock is divided by 512(2*256).
15	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			prescale
			Prescale Factor
14:12	RW	0×0	This field defines the prescale factor applied to input clock. The value N means that the input clock is divided by 2^N.
11:10	RO	0x0	reserved
			clk_sel
			Clock Source Select
9	RW	0×0	0: non-scaled clock is selected as PWM clock source. It means that the prescale clock is directly used as the PWM clock source
			1: scaled clock is selected as PWM clock source
			lp_en
			Low Power Mode Enable
		0x0	0: disabled
8	RW		1: enabled
			When PWM channel is inactive state and Low Power Mode is enabled, the path to PWM Clock prescale module is blocked to reduce power consumption.
7:6	RO	0x0	reserved
	RW	RW 0x0	output_mode
5			PWM Output mode
		0.0	0: left aligned mode
		/	1: center aligned mode
2			inactive_pol
			Inactive State Output Polarity
4	RW	0×0	This defines the output waveform polarity when PWM channel is in inactive state. The inactive state means that PWM finishes the complete waveform in one-shot mode or PWM channel is disabled.
			0: negative
			1: positive

Bit	Attr	Reset Value	Description
			duty_pol
			Duty Cycle Output Polarity
3	RW	0x0	This defines the polarity for duty cycle. PWM starts the output waveform with duty cycle.
			0: negative
			1: positive
			pwm_mode
		0x0	PWM Operation Mode
	RW		00: One shot mode. PWM produces the waveform within the repeated times defined by PWMx_CTRL_rpt
2:1			01: Continuous mode. PWM produces the waveform continuously
			10: Capture mode. PWM measures the cycles of high/low polarity of input waveform.
			11: reserved
		V 0×0	pwm_en
0			PWM channel enable
	RW		0: disabled
			1: enabled. If the PWM is worked the one-shot mode, this bit will be cleared at the end of operation

PWM_PWM2_CNT

Address: Operational Base + offset (0x0020)

PWM Channel 2 Counter Register

Bit	Attr	Reset Value	Description
			CNT Timer Counter
31:0	RO		The 32-bit indicates current value of PWM Channel 2 counter. The counter runs at the rate of PWM clock.
			The value ranges from 0 to (2^32-1).

PWM_PWM2_PERIOD_HPR

Address: Operational Base + offset (0x0024)

PWM Channel 2 Period Register/High Polarity Capture Register

Bit	Attr	Reset Value	Description
31:0		0×00000000	PERIOD_LPR
	RW		Output Waveform Period/Input Waveform High Polarity Cycle
			If PWM is operated at the continuous mode or one-shot mode, this value defines the period of the output waveform. Note that, if the PWM is operated at the center-aligned mode, the period should be an even one, and therefore only the bit [31:1] is taken into account and bit [0] always considered as 0.
			If PWM is operated at the capture mode, this value indicates the effective high polarity cycles of input waveform.
			This value is based on the PWM clock. The value ranges from 0 to (2^32-1).

PWM_PWM2_DUTY_LPR

Address: Operational Base + offset (0x0028)

PWM Channel 2 Duty Register/Low Polarity Capture Register

Bit	Attr	Reset Value	Description
		10'	DUTY_LPR
	RW	0×00000000	Output Waveform Duty Cycle/Input Waveform Low Polarity Cycle
31:0			If PWM is operated at the continuous mode or one-shot mode, this value defines the duty cycle of the output waveform. The PWM starts the output waveform with duty cycle. Note that, if the PWM is operated at the center-aligned mode, the period should be an even one, and therefore only the [31:1] is taken into account.
			If PWM is operated at the capture mode, this value indicates the effective low polarity cycles of input waveform.
			This value is based on the PWM clock. The value ranges from 0 to (2^32-1).

PWM_PWM2_CTRL

Address: Operational Base + offset (0x002c)

PWM Channel 2 Control Register

Bit	Attr	Reset Value	Description
			rpt
			Repeat Counter
31:24	RW	0×00	This field defines the repeated effective periods of output waveform in one-shot mode. The value N means N+1 repeated effective periods.
			scale
			Scale Factor
23:16	RW	0×00	This fields defines the scale factor applied to prescaled clock. The value N means the clock is divided by 2*N. If N is 0, it means that the clock is divided by 512(2*256).
15	RO	0x0	reserved
			prescale
			Prescale Factor
14:12	RW	0x0	This field defines the prescale factor applied to input clock. The value N means that the input clock is divided by 2^N.
11:10	RO	0x0	reserved
	_	10	clk_sel
			Clock Source Select
9	RW	0×0	0: non-scaled clock is selected as PWM clock source. It means that the prescale clock is directly used as the PWM clock source
			1: scaled clock is selected as PWM clock source

Bit	Attr	Reset Value	Description
			lp_en
			Low Power Mode Enable
			0: disabled
8	RW	0x0	1: enabled
			When PWM channel is inactive state and Low Power Mode is enabled, the path to PWM Clock prescale module is blocked to reduce power consumption.
7:6	RO	0x0	reserved
			output_mode
_	DW	0.40	PWM Output mode
5	RW	0x0	0: left aligned mode
			1: center aligned mode
			inactive_pol
			Inactive State Output Polarity
4	RW	0×0	This defines the output waveform polarity when PWM channel is in inactive state. The inactive state means that PWM finishes the complete waveform in one-shot mode or PWM channel is disabled.
		• . <	0: negative
			1: positive
	_	19	duty_pol
			Duty Cycle Output Polarity
3	RW	0×0	This defines the polarity for duty cycle. PWM starts the output waveform with duty cycle.
1	_		0: negative
Y			1: positive

Bit	Attr	Reset Value	Description
2:1	RW	0×0	pwm_mode PWM Operation Mode 00: One shot mode. PWM produces the waveform within the repeated times defined by PWMx_CTRL_rpt.
			01: Continuous mode. PWM produces the waveform continuously10: Capture mode. PWM measures the cycles of high/low polarity of input waveform.11: reserved
0	RW	0x0	pwm_en PWM channel enable 0: disabled 1: enabled. If the PWM is worked the one-shot mode, this bit will be cleared at the end of operation

PWM_PWM3_CNT

Address: Operational Base + offset (0x0030)

PWM Channel 3 Counter Register

Bit	Attr	Reset Value	Description
			CNT
		1-	Timer Counter
31:0	RO	0×00000000	The 32-bit indicates current value of PWM Channel 3 counter. The counter runs at the rate of PWM clock.
1			The value ranges from 0 to (2^32-1) .

PWM_PWM3_PERIOD_HPR

Address: Operational Base + offset (0x0034)

PWM Channel 3 Period Register/High Polarity Capture Register

Bit	Attr	Reset Value	Description
-----	------	-------------	-------------

Bit	Attr	Reset Value	Description
			PERIOD_LPR
			Output Waveform Period/Input Waveform High Polarity Cycle
31:0	RW	0×00000000	If PWM is operated at the continuous mode or one-shot mode, this value defines the period of the output waveform. Note that, if the PWM is operated at the center-aligned mode, the period should be an even one, and therefore only the bit [31:1] is taken into account and bit [0] always considered as 0.
			If PWM is operated at the capture mode, this value indicates the effective high polarity cycles of input waveform.
			This value is based on the PWM clock. The value ranges from 0 to (2^32-1) .

PWM_PWM3_DUTY_LPR

Address: Operational Base + offset (0x0038)

PWM Channel 3 Duty Register/Low Polarity Capture Register

Bit	Attr	Reset Value	Description
	RW	0×00000000	DUTY_LPR
			Output Waveform Duty Cycle/Input Waveform Low Polarity Cycle
31:0			If PWM is operated at the continuous mode or one-shot mode, this value defines the duty cycle of the output waveform. The PWM starts the output waveform with duty cycle. Note that, if the PWM is operated at the center-aligned mode, the period should be an even one, and therefore only the [31:1] is taken into account.
			If PWM is operated at the capture mode, this value indicates the effective low polarity cycles of input waveform.
			This value is based on the PWM clock. The value ranges from 0 to (2^32-1).

PWM_PWM3_CTRL

Address: Operational Base + offset (0x003c)

PWM Channel 3 Control Register

Bit	Attr	Reset Value	Description
			rpt
			Repeat Counter
31:24	RW	0×00	This field defines the repeated effective periods of output waveform in one-shot mode. The value N means N+1 repeated effective periods.
			scale
			Scale Factor
23:16	RW	0×00	This fields defines the scale factor applied to prescaled clock. The value N means the clock is divided by 2*N. If N is 0, it means that the clock is divided by 512(2*256).
15	RO	0x0	reserved
			prescale
		0×0	Prescale Factor
14:12	RW		This field defines the prescale factor applied to input clock. The value N means that the input clock is divided by 2^N.
11:10	RO	0x0	reserved
		•	clk_sel
			Clock Source Select
9	RW	0×0	0: non-scaled clock is selected as PWM clock source. It means that the prescale clock is directly used as the PWM clock source
	C		1: scaled clock is selected as PWM clock source
2			lp_en
			Low Power Mode Enable
			0: disabled
8	RW	0x0	1: enabled
			When PWM channel is inactive state and Low Power Mode is enabled, the path to PWM Clock prescale module is blocked to reduce power consumption.
7:6	RO	0x0	reserved

Bit	Attr	Reset Value	Description	
5	RW	0×0	output_mode PWM Output mode 0: left aligned mode 1: center aligned mode	
4	RW	0×0	inactive_pol Inactive State Output Polarity This defines the output waveform polarity when PWM channel is in inactive state. The inactive state means that PWM finishes the complete waveform in one-shot mode or PWM channel is disabled. 0: negative 1: positive	
3	RW	0×0	duty_pol Duty Cycle Output Polarity This defines the polarity for duty cycle. PWM starts the output waveform with duty cycle. 0: negative 1: positive	
2:1	RW	0×0	pwm_mode PWM Operation Mode 00: One shot mode. PWM produces the waveform within the repeated times defined by PWMx_CTRL_rpt 01: Continuous mode. PWM produces the waveform continuously 10: Capture mode. PWM measures the cycles of high/low polarity of input waveform. 11: reserved	
0	RW	0×0	pwm_en PWM channel enable 0: disabled 1: enabled. If the PWM is worked the one-shot mode, this bit will be cleared at the end of operation	

PWM_INTSTS

Address: Operational Base + offset (0x0040)

Interrupt Status Register

Bit	Attr	Reset Value	Description	
31:12	RO	0x0	reserved	
		0×0	CH3_Pol	
			Channel 3 Interrupt Polarity Flag	
11	RO		This bit is used in capture mode in order to identify the transition of the input waveform when interrupt is generated. When bit is 1, please refer to PWM3_PERIOD_HPR to know the effective high cycle of Channel 0 input waveform. Otherwise, please refer to PWM3_PERIOD_HPR to know the effective low cycle of Channel 3 input waveform. Write 1 to CH3_IntSts will clear this bit.	
			CH2_Pol	
			Channel 2 Interrupt Polarity Flag	
10 RO (0×0	This bit is used in capture mode in order to identify the transition of the input waveform when interrupt is generated. When bit is 1, please refer to PWM2_PERIOD_HPR to know the effective high cycle of Channel 0 input waveform. Otherwise, please refer to PWM2_PERIOD_HPR to know the effective low cycle of Channel 2 input waveform. Write 1 to CH2_IntSts will clear this bit.	
	RO	RO 0x0	CH1_Pol	
9			Channel 1 Interrupt Polarity Flag	
			This bit is used in capture mode in order to identify the transition of the input waveform when interrupt is generated. When bit is 1, please refer to PWM1_PERIOD_HPR to know the effective high cycle of Channel 0 input waveform. Otherwise, please refer to PWM1_PERIOD_HPR to know the effective low cycle of Channel 1 input waveform. Write 1 to CH1_IntSts will clear this bit.	

Bit	Attr	Reset Value	Description	
			CH0_Pol	
			Channel 0 Interrupt Polarity Flag	
8	RO	0×0	This bit is used in capture mode in order to identify the transition of the input waveform when interrupt is generated. When bit is 1, please refer to PWM0_PERIOD_HPR to know the effective high cycle of Channel 0 input waveform. Otherwise, please refer to PWM0_PERIOD_HPR to know the effective low cycle of Channel 0 input waveform. Write 1 to CH0_IntSts will clear this bit.	
7:4	RO	0x0	reserved	
3	RW	0×0	CH3_IntSts Channel 3 Interrupt Status 0: Channel 3 Interrupt not generated 1: Channel 3 Interrupt generated	
2	RW	0×0	CH2_IntSts Channel 2 Interrupt Status 0: Channel 2 Interrupt not generated 1: Channel 2 Interrupt generated	
1	RW	0x0	CH1_IntSts Channel 1 Interrupt Status 0: Channel 1 Interrupt not generated 1: Channel 1 Interrupt generated	
0	RW	0x0	CH0_IntSts Channel 0 Raw Interrupt Status 0: Channel 0 Interrupt not generated 1: Channel 0 Interrupt generated	

PWM_INT_EN

Address: Operational Base + offset (0x0044)

Interrupt Enable Register

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved

Bit	Attr	Reset Value	Description	
			CH3_Int_en	
3	RW	00	Channel 3 Interrupt Enable	
3	KVV	0x0	0: Channel 3 Interrupt disabled	
			1: Channel 3 Interrupt enabled	
		0×0	CH2_Int_en	
2	DVV		Channel 2 Interrupt Enable	
2	RW		0: Channel 2 Interrupt disabled	
			1: Channel 2 Interrupt enabled	
		0x0	CH1_Int_en	
1	DVV		Channel 1 Interrupt Enable	
1	RW		0: Channel 1 Interrupt disabled	
			1: Channel 1 Interrupt enabled	
		0×0	CH0_Int_en	
0	DVV		Channel 0 Interrupt Enable	
0	RW		0: Channel 0 Interrupt disabled	
			1: Channel 0 Interrupt enabled	

36.5 Interface Description

Table 36-1PWM Interface Description

Module Pin	IO	Pad Name	IOMUX Setting
pwm3	0	PWMirin_GPIO3d2	GPIO3D_IOMUX[4]= 1'b1
pwm2	0	PWM2_GPIO0d4	GPIO0D_IOMUX[8]= 1'b1
pwm1	0	PWM1_GPIO0d3	GPIO0D_IOMUX[6]= 1'b1
pwm0	0	PWM0_GPIO0d2	GPIO0D_IOMUX[4]= 1'b1

Notes: 1. I=input, O=output, I/O=input/output, bidirectional

2. There are two sets of IOs for each PWM channel

36.6 Application Notes

36.6.1 PWM Reference Mode Standard Usage Flow

- 1. Set PWMx_CTRL.pwm_en to '0' to disable the PWM channel.
- 2. Choose the prescale factor and the scale factor for pclk by programming PWMx_CTRL.prescale and PWMx_CTRL.scale, and select the clock needed by setting PWMx_CTRL.clk_sel.
- 3. Configure the channel to work in the reference mode.

- 4. Enable the INT_EN.chx_int_en to enable the interrupt generation.
- 5. Enable the channel by writing'1' to PWMx_CTRL.pwm_en bit to start the channel.
- 6. When an interrupt is asserted, refer to INTSTS register to know the raw interrupt status. If the corresponding polarity flag is set, turn to PWMx_PERIOD_HPC register to know the effective high cycles of input waveforms, otherwise turn to PWMx_DUTY_LPC register to know the effective low cycles.
- 7. Write '0' to PWMx CTRL.pwm en to disable the channel.

36.6.2 PWM One-shotMode/Continuous Standard Usage Flow

- 1. Set PWMx_CTRL.pwm_en to '0' to disable the PWM channel.
- 2. Choose the prescale factor and the scale factor for pclk by programming PWMx_CTRL.prescale and PWMx_CTRL.scale, and select the clock needed by setting PWMx_CTRL.clk_sel.
- 3. Choose the output mode by setting PWMx_CTRL.output_mode, and set the duty polarity and inactive polarity by programming PWMx_CTRL.duty_pol and PWMx_CTRL.inactive_pol.
- 4. Set the PWMx_CTRL.rpt if the channel is desired to work in the one-shot mode;
- 5. Configure the channel to work in the one-shot mode or the continuous mode.
- 6. Enable the INT_EN.chx_int_en to enable the interrupt generation if if the channel is desired to work in the one-shot mode;
- 7. If the channel is working in the one-shot mode, an interrupt is asserted after the end of operation, and the PWMx_CTRL.pwm_en is automatically cleared. Whatever mode the channel is working, write '0' to PWMx_CTRL.pwm_en bit to disable the PWM channel.

36.6.3 Low-power mode

Setting PWMx_CTRL.lp_en to '1' makes the channel enter the low-power mode. When then PWM channel is inactive, the APB bus clock to the PWM channel is gated in order to reduce the power consumption. It is recommended to disable the channel before entering the low-power mode, and quit the low-power mode before enabling the channel.

36.6.4 Other notes

When the channel is active to produce waveforms, it is free to programming the PWMx_PERIOD_HPC and PWMx_DUTY_LPC register. The change will not take effect immediately until the current period ends.

An active channel can be changed to another operation mode without disable the PWM channel. However, during the transition of the operation mode there may be some irregular output waveforms.

If the PWM operational frequency is desired to changed, it is recommended to disable the channel first, and then make the channel enter the low-power mode to gate the clock. It is free to change clock setting. After clock setting is changed, quit the lower-power mode and enable the channel to take the change into effect.