Chapter 28 I2S 2-channel

28.1 Overview

The I2S/PCM controller is designed for interfacing between the AHB bus and the I2S bus.

The I2S bus (Inter-IC sound bus) is a serial link for digital audio data transfer between devices in the system and is invented by Philips Semiconductor. Now it is widely used by many semiconductor manufacturers.

I2S bus is widely used in the devices such as ADC, DAC, DSP, CPU, etc. With the I2S interface, we can connect audio devices and the embedded SoC platform together and provide an audio interface solution for the system.

28.1.1 Features

Not only I2S but also PCM mode stereo audio output and input are supported in I2S/PCM1/2 controller.

- Support two internal 32-bit wide and 32-location deep FIFOs, one for transmitting and the other for receiving audio data
- Support AHB bus interface
- Support 16 ~ 32 bits audio data transfer
- Support master and slave mode
- Support DMA handshaking interface and configurable DMA water level
- Support transmit FIFO empty, underflow, receive FIFO full, overflow interrupt and all interrupts can be masked
- Support configurable water level of transmit FIFO empty and receive FIFO full interrupt
- Support combined interrupt output
- Support 2-channel audio transmitting in I2S mode and PCM mode
- Support 2-channel audio receiving in I2S and PCM mode
- Support up to 192kHz sample rate
- Support I2S normal, left and right justified mode serial audio data transfer
- Support PCM early, late1, late2, late3 mode serial audio data transfer
- Support MSB or LSB first serial audio data transfer
- Support 16 to 31 bit audio data left or right justified in 32-bit wide FIFO
- Support two 16-bit audio data store together in one 32-bit wide location
- Support 2 independent LRCK signals, one for receiving and the other for transmitting audio data
- Support configurable SCLK and LRCK polarity
- Support SCLK is equivalent to MCLK divided by an even number range from 2 to 64 in master mode

28.2 Block Diagram

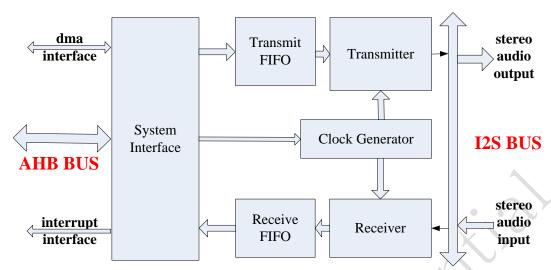


Fig.28-1I2S/PCM1/2 controller (2 channel) Block Diagram

System Interface

The system interface implements the AHB slave operation. It contains not only control registers of transmitters and receiver inside but also interrupt and DMA handshaking interface.

Clock Generator

The Clock Generator implements clock generation function. The input source clock to the module is MCLK_I2S, and by the divider of the module, the clock generator generates SCLK and LRCK to transmitter and receiver.

Transmitters

The Transmitters implement transmission operation. The transmitters can act as either a master or a slave, with I2S or PCM mode surround (up to 7.1 channel) serial audio interface.

Receiver

The Receiver implements receive operation. The receiver can act as either a master or a slave, with I2S or PCM mode stereo serial audio interface.

Transmit FIFO

The Transmit FIFO is the buffer to store transmitted audio data. The size of the FIFO is 32bits x 32.

Receive FIFO

The Receive FIFO is the buffer to store received audio data. The size of the FIFO is 32bits x 32.

28.3 Function description

In the I2S/PCM1/2 controller, there are four types: transmitter-master & receiver-master; transmitter-master & receiver-slave; transmitter-slave & receiver-master; transmitter-slave & receiver-slave.

In broadcasting application, the I2S/PCM1/2 controller is used as a transmitter

and external or internal audio CODEC is used as a receiver. In recording application, the I2S/PCM1/2 controller is used as a receiver and external or internal audio CODEC is used as a transmitter. Either the I2S/PCM1/2 controller or the audio CODEC can act as a master or a slave, but if one is master, the other must be slave.

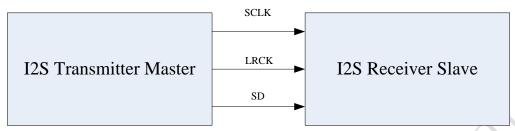


Fig.28-2I2S transmitter-master & receiver-slave condition

When the transmitter acts as a master, it sends all signals to thereceiver (the slave), and CPU controls when to send clock and data to the receiver. When acts as a slave, SD signal still goes from transmitter to receiver, but SCLK and LRCK signals are from the receiver (the master) to the transmitter. Based on three interface specifications, transmitting data should be ready before transmitter receives SCLK and LRCK signals. CPU should know when the receiver to initialize a transaction and when the transmitterto send data.

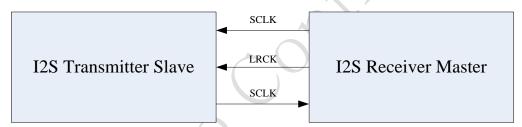


Fig.28-3I2S transmitter-slave & receiver-master condition

When the receiver acts as a master, it sends SCLK and LRCK signals to the transmitter (the slave) and receives serial data. So CPU must tell the transmitter when to start a transaction for it to prepare transmitting data then start a transfer and send clock and channel-select signals. When the receiver acts as a slave, CPU should only do initial setting and wait for all signals and then start reading data.

Before transmitting or receiving data, CPU need do initial setting to the I2S register. These includes CPU settings, I2S interface registers settings, and maybe the embedded SoC platform settings. These registers must be set before starting data transfer.

28.3.1 I2S normal mode

This is the waveform of I2S normal mode. For LRCK (i2s1_lrck_rx/i2s1_lrck_tx) signal, it goes low to indicate left channel and high to right channel. For SD (i2s1_sdo, i2s1_sdi) signal, it starts sending the first bit (MSB or LSB) one SCLK clock cycle after LRCK changes. The range of SD signal width is from 16 to 32bits.

Fig.28-4I2S normal mode timing format

28.3.2 I2S left justified mode

This is the waveform of I2S left justified mode. For LRCK (i2s1_lrck_rx / i2s1_lrck_tx) signal, it goes high to indicate left channel and low to right channel. For SD (i2s1_sdo, i2s1_sdi) signal, it starts sending the first bit (MSB or LSB) at the same time when LRCK changes. The range of SD signal width is from 16 to 32bits.

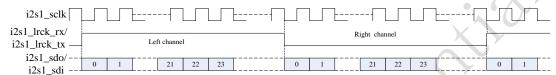


Fig.28-5I2S left justified mode timing format

28.3.3 I2S right justified mode

This is the waveform of I2S right justified mode. For LRCK (i2s1_lrck_rx/i2s1_lrck_tx) signal, it goes high to indicate left channel and low to right channel. For SD (i2s1_sdo, i2s1_sdi) signal, it transfers MSB or LSB first; but what is different from I2S normal or left justified mode, the last bit of the transferred data is aligned to the transition edge of the LRCK signal while one bit is transferred at one SCLK cycle. The range of SD signal width is from 16 to 32bits.

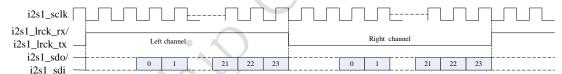


Fig. 28-6I2S right justified mode timing format

28.3.4 PCM early mode

This is the waveform of PCM early mode. For LRCK (i2s1_lrck_rx/i2s1_lrck_tx) signal, it goes high to indicate the start of a group of audio channels. For SD (i2s1_sdo, i2s1_sdi) signal, it sends the first bit (MSBor LSB) at the same time when LRCK goes high. The range of SD signal width is from 16 to 32bits.

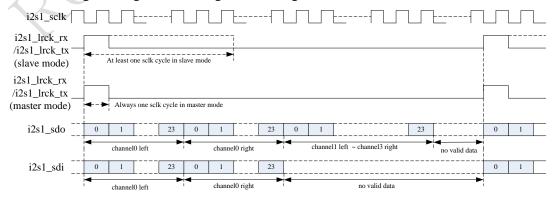


Fig.28-7PCM early mode timing format

28.3.5 PCM late1 mode

This is the waveform of PCM early mode. For LRCK (i2s1_lrck_rx/i2s1_lrck_tx) signal, it goes high to indicate the start of a group of audio channels. For SD (i2s1_sdo, i2s1_sdi) signal, it sends the first bit (MSB or LSB) one SCLK clock cycle after LRCK goes high. The range of SD signal width is from 16 to 32bits.

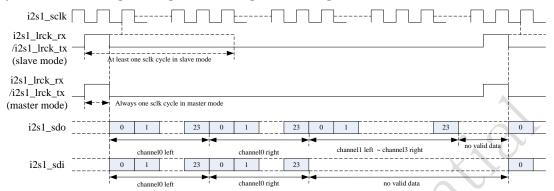


Fig.28-8PCM late1 mode timing format

28.3.6 PCM late2 mode

This is the waveform of PCM early mode. For LRCK (i2s1_lrck_rx/i2s1_lrck_tx) signal, it goes high to indicate the start of a group of audio channels. For SD (i2s1_sdo, i2s1_sdi) signal, it sends the first bit (MSB or LSB)two SCLK clock cycles after LRCK goes high. The range of SD signal width is from 16 to 32bits.

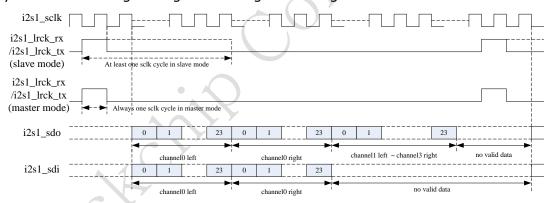


Fig.28-9PCM late2 mode timing format

28.3.7 PCM late3 mode

This is the waveform of PCM early mode. For LRCK (i2s1_lrck_rx/i2s1_lrck_tx) signal, it goes high to indicate the start of a group of audio channels. For SD (i2s1_sdo, i2s1_sdi) signal, it sends the first bit (MSB or LSB) three SCLK clock cycles after LRCK goes high. The range of SD signal width is from 16 to 32bits.

Fig.28-10PCM late3 mode timing format

28.4 Register description

28.4.1 Register Summary

Name	Offset	Size	Reset Value	Description
I2Sx_TXCR	0x0000	W	0x0000000f	transmit operation control register
I2Sx_RXCR	0x0004	W	0x0000000f	receive operation control register
I2Sx_CKR	0x0008	W	0x00071f1f	clock generation register
I2Sx_FIFOLR	0x000c	W	0x00000000	FIFO level register
I2Sx_DMACR	0x0010	W	0x001f0000	DMA control register
I2Sx_INTCR	0x0014	W	0x00000000	interrupt control register
I2Sx_INTSR	0x0018	W	0x00000000	interrupt status register
I2Sx_XFER	0x001c	W	0x00000000	Transfer Start Register
I2Sx_CLR	0x0020	W	0x00000000	SCLK domain logic clear Register
I2Sx_TXDR	0x0400 ~0x7FC	W	0x00000000	Transmit FIFO Data Register
I2Sx_RXDR	0x0800 ~0xBFC	W	0×00000000	Receive FIFO Data Register

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access, x=1,2

28.4.2 Detail Register Description

I2Sx_TXCR

Address: Operational Base + offset (0x0000)

transmit operation control register

Bit	Attr	Reset Value	Description
31:23	RO	0x0	reserved
22:17	RW	0×00	RCNT right justified counter (Can be written only when XFER[0] bit is 0.) Only valid in I2S Right justified format and slave tx mode is selected. Start to transmit data RCNT sclk cycles after left channel valid.
16:15	RW	0x0	CSR Channel select register Must be 2'b00.

Bit	Attr	Reset Value	Description
14	RW	0×0	HWT Halfword word transform (Can be written only when XFER[0] bit is 0.) Only valid when VDW select 16bit data. 0:32 bit data valid from AHB/APB bus. Low 16 bit for left channel and high 16 bit for right channel. 1:low 16bit data valid from AHB/APB bus, high 16 bit data invalid.
13	RO	0x0	reserved
12	RW	0×0	SJM Store justified mode (Can be written only when XFER[0] bit is 0.) 16bit~31bit DATA stored in 32 bits width fifo. If VDW select 16bit data, this bit is valid only when HWT select 0.Because if HWT is 1, every fifo unit contain two 16bit data and 32 bit space is full, it is impossible to choose justified mode. 0:right justified 1:left justified
11	RW	0×0	FBM First Bit Mode (Can be written only when XFER[0] bit is 0.) 0:MSB 1:LSB
10:9	RW	0x0	IBM I2S bus mode (Can be written only when XFER[0] bit is 0.) 0:I2S normal 1:I2S Left justified 2:I2S Right justified 3:reserved
8:7	RW	0×0	PBM PCM bus mode (Can be written only when XFER[0] bit is 0.) 0:PCM no delay mode 1:PCM delay 1 mode 2:PCM delay 2 mode 3:PCM delay 3 mode
6	RO	0x0	reserved
5	RW	0x0	TFS Transfer format select (Can be written only when XFER[0] bit is 0.) 0: I2S format 1: PCM format

Bit	Attr	Reset Value	Description
4:0	RW	0x0f	VDW Valid Data width (Can be written only when XFER[0] bit is 0.) 0~14:reserved 15:16bit 16:17bit 17:18bit 18:19bit n:(n+1)bit 28:29bit 29:30bit 30:31bit 31:32bit

I2Sx_RXCR

Address: Operational Base + offset (0x0004)

receive operation control register

receive	operation	n control registe	
Bit	Attr	Reset Value	Description
31:15	RO	0x0	reserved
14	RW	0x0	HWT Halfword word transform (Can be written only when XFER[1] bit is 0.) Only valid when VDW select 16bit data. 0:32 bit data valid to AHB/APB bus. Low 16 bit for left channel and high 16 bit for right channel. 1:low 16bit data valid to AHB/APB bus, high 16 bit data invalid.
13	RO	0x0	reserved
12	RW	0x0	SJM Store justified mode (Can be written only when XFER[1] bit is 0.) 16bit~31bit DATA stored in 32 bits width fifo. If VDW select 16bit data, this bit is valid only when HWT select 0.Because if HWT is 1, every fifo unit contain two 16bit data and 32 bit space is full, it is impossible to choose justified mode. 0:right justified 1:left justified
11	RW	0x0	FBM First Bit Mode (Can be written only when XFER[1] bit is 0.) 0:MSB 1:LSB

Bit	Attr	Reset Value	Description
10:9	RW	0x0	IBM I2S bus mode (Can be written only when XFER[1] bit is 0.) 0:I2S normal 1:I2S Left justified 2:I2S Right justified 3:reserved
8:7	RW	0×0	PBM PCM bus mode (Can be written only when XFER[1] bit is 0.) 0:PCM no delay mode 1:PCM delay 1 mode 2:PCM delay 2 mode 3:PCM delay 3 mode
6	RO	0x0	reserved
5	RW	0×0	TFS Transfer format select (Can be written only when XFER[1] bit is 0.) 0:i2s 1:pcm
4:0	RW	0x0f	VDW Valid Data width (Can be written only when XFER[1] bit is 0.) 0~14:reserved 15:16bit 16:17bit 17:18bit 18:19bit n:(n+1)bit 28:29bit 29:30bit 30:31bit 31:32bit

I2Sx_CKR

Address: Operational Base + offset (0x0008)

clock generation register

sio sity genter a arrow i o greece.				
Bit	Attr	Reset Value	Description	
31:28	RO	0x0	reserved	
		MSS		
			Master/slave mode select	
27	RW		(Can be written only when XFER[1] or	
27 KW	UXU	XFER[0] bit is 0.)		
			0:master mode(sclk output)	
			1:slave mode(sclk input)	

Bit	Attr	Reset Value	Description
26	RW	0x0	CKP Sclk polarity (Can be written only when XFER[1] or XFER[0] bit is 0.) 0: sample data at posedgesclk and drive data at negedge sclk 1: sample data at negedge sclk and drive data at posedgesclk
25	RW	0x0	RLP Receive Irck polarity (Can be written only when XFER[1] or XFER[0] bit is 0.) 0:normal polarity (I2S normal: low for left channel, high for right channel I2S left/right just: high for left channel, low for right channel PCM start signal: high valid) 1:oppsite polarity (I2S normal: high for left channel, low for right channel I2S left/right just: low for left channel, high for right channel PCM start signal: low valid)
24	RW	0x0	TLP Transmit lrck polarity (Can be written only when XFER[1] or XFER[0] bit is 0.) 0:normal polarity (I2S normal: low for left channel, high for right channel I2S left/right just: high for left channel, low for right channel PCM start signal: high valid) 1:oppsite polarity (I2S normal: high for left channel, low for right channel I2S left/right just: low for left channel, high for right channel PCM start signal: low valid)

Bit	Attr	Reset Value	Description
Bit 23:16	Attr	Reset Value 0x07	MDIV mclk divider (Can be written only when XFER[1] or XFER[0] bit is 0.) Serial Clock Divider = Fmclk / Ftxsclk-1.(mclkfrequecy / txsclk frequecy-1) 0 :Fmclk=Ftxsclk; 1 :Fmclk=2*Ftxsclk; 2,3 :Fmclk=4*Ftxsclk; 4,5 :Fmclk=6*Ftxsclk;
			 2n,2n+1:Fmclk=(2n+2)*Ftxsclk; 60,61:Fmclk=62*Ftxsclk; 62,63:Fmclk=64*Ftxsclk; 252,253:Fmclk=254*Ftxsclk; 254,255:Fmclk=256*Ftxsclk;
15:8	RW	0x1f	RSD Receive sclk divider (Can be written only when XFER[1] or XFER[0] bit is 0.) Receive sclk divider= Fsclk/Frxlrck 0~30:reserved 31: 32fs 32: 33fs 33: 34fs 34: 35fs n: (n+1)fs 253: 254fs 254: 255fs 255: 256fs
7:0	RW	0x1f	TSD Transmit sclk divider (Can be written only when XFER[1] or XFER[0] bit is 0.) Transmit sclk divider=Ftxsclk/Ftxlrck 0~30:reserved 31: 32fs 32: 33fs 33: 34fs 34: 35fs
			n: (n+1)fs 253: 254fs 254: 255fs 255: 256fs

I2Sx_FIFOLR

Address: Operational Base + offset (0x000c)

FIFO level register

Bit	Attr	Reset Value	Description
31:30	RO	0x0	reserved
			RFL
29:24	RO	0x00	Receive FIFO Level
29.24	RU	UXUU	Contains the number of valid data entries in
			the receive FIFO.
23:6	RO	0x0	reserved
			TFL
5:0	DO.	20 10200 1	Transmit FIFO Level
	KU		Contains the number of valid data entries in
			the transmit FIFO0.

I2Sx_DMACR

Address: Operational Base + offset (0x0010)

DMA control register

Bit	Attr	Reset Value	Description
31:25	RO	0x0	reserved
24	RW	0x0	RDE Receive DMA Enable 0 : Receive DMA disabled 1 : Receive DMA enabled
23:21	RO	0x0	reserved
20:16	RW	0x1f	RDL Receive Data Level This bit field controls the level at which a DMA request is made by the receive logic. The watermark level = DMARDL+1; that is, dma_rx_req is generated when the number of valid data entries in the receive FIFO is equal to or above this field value + 1.
15:9	RO	0x0	reserved
8	RW	0×0	TDE Transmit DMA Enable 0: Transmit DMA disabled 1: Transmit DMA enabled
7:5	RO	0x0	reserved
4:0	RW	0×00	TDL Transmit Data Level This bit field controls the level at which a DMA request is made by the transmit logic. It is equal to the watermark level; that is, the dma_tx_req signal is generated when the number of valid data entries in the TXFIFO(TXFIFO0 if CSR=00;TXFIFO1 if CSR=01,TXFIFO2 if CSR=10,TXFIFO3 if CSR=11)is equal to or below this field value.

I2Sx_INTCR

Address: Operational Base + offset (0x0014)

interrupt control register

		l register	
Bit	Attr	Reset Value	Description
31:25	RO	0x0	reserved
			RFT
			Receive FIFO Threshold
24:20	RW	0x00	When the number of receive FIFO entries is
			more than or equal to this threshold plus 1,
			the receive FIFO full interrupt is triggered.
19	RO	0x0	reserved
			RXOIC
18	WO	0x0	RX overrun interrupt clear
			Write 1 to clear RX overrun interrupt.
			RXOIE
17	RW	0×0	RX overrun interrupt enable
17	I VV	UXU	0:disable
			1:enable
			RXFIE
16	RW	0x0	RX full interrupt enable
10	IXVV	0.00	0:disable
			1:enable
15:9	RO	0x0	reserved
			TFT
			Transmit FIFO Threshold
			When the number of transmit FIFO (TXFIFO0
8:4	RW	0x00	if CSR=00; TXFIFO1 if CSR=01, TXFIFO2 if
			CSR=10, TXFIFO3 if CSR=11) entries is less
			than or equal to this threshold, the transmit
_			FIFO empty interrupt is triggered.
3	RO	0x0	reserved
			TXUIC
2	WO	0x0	TX underrun interrupt clear
			Write 1 to clear TX underrun interrupt.
		A Y	TXUIE
1	RW	0x0	TX underrun interrupt enable
_	A.	1	0:disable
		\	1:enable
		7	TXEIE
0	RW	0x0	TX empty interrupt enable
			0:disable
			1:enable

I2Sx_INTSR

Address: Operational Base + offset (0x0018)

interrupt status register

Bit	Attr	Reset Value	Description			
31:18	RO	0x0	reserved			
17			RXOI			
	DO.	0.40	RX overrun interrupt			
	RO	0x0	0:inactive			
			1:active			

Roc	法 場 法 微 电子	RK3	128

Bit	Attr	Reset Value	Description
			RXFI
16	RO	0×0	RX full interrupt
10	KO	UXU	0:inactive
			1:active
15:2	RO	0x0	reserved
			TXUI
1	RO	0×0	TX underrun interrupt
1	KU	UXU	0:inactive
			1:active
			TXEI
0	RO	0×0	TX empty interrupt
U	KO	UXU	0:inactive
			1:active

I2Sx_XFER

Address: Operational Base + offset (0x001c)

Transfer Start Register

Bit	Bit Attr Reset Value		Description	
31:2	RO	0x0	reserved	
1	RW	0×0	RXS RX Transfer start bit 0:stop RX transfer. 1:start RX transfer	
0	RW	0×0	TXS TX Transfer start bit 0:stop TX transfer. 1:start TX transfer	

I2Sx_CLR

Address: Operational Base + offset (0x0020)

SCLK domain logic clear Register

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
1	RW	0×0	RXC RX logic clear This is a self cleard bit. Write 1 to clear all receive logic.
0	RW	0×0	TXC TX logic clear This is a self cleard bit. Write 1 to clear all transmit logic.

I2Sx_TXDR

Address: Operational Base + offset (0x0024)

Transmit FIFO Data Register

Rit Attr Reset Value Description	Dit Atti Reset value Description	Bit	Attr	Reset Value	Description
----------------------------------	----------------------------------	-----	------	--------------------	-------------

Bit	Attr	Reset Value	Description
31:0	WO	0x00000000	TXDR Transmit FIFO Data Register When it is written to, data are moved into the transmit FIFO.

I2Sx_RXDR

Address: Operational Base + offset (0x0028)

Receive FIFO Data Register

Bit	Attr	Reset Value	Description
31:0	RO	000000000	RXDR Receive FIFO Data Register When the register is read, data in the receive FIFO is accessed.

28.5 Interface description

I2S has 2 IOMUX, which controlled by GRF_SOC_CON1[5].

When GRF SOC_CON1[5] is 1'b0, the IOMUX is as follow.

Module Pin	Direction	Pad Name	IOMUX Setting
	1	I2S	
i2s_clk	0	IO_I2Smclk _MMC1clkou t_XIN32k_G PIO1a0	GRF_GPIO1A_IOMUX[1: 0]=2'b1
i2s_sclk	I/O	IO_I2Ssclk_ MMC1d0_PM ICsleep1_GP IO1a1	GRF_GPIO1A_IOMUX[3:2]=2'b1
i2s_lrck_rx	I/O	IO_I2Slrckr x_MMC1d1_ GPIO1a2	GRF_GPIO1A_IOMUX[5:4]=2'b1
i2s_lrck_tx	I/O	IO_I2Slrcktx _GPIO1a3	GRF_GPIO1A_IOMUX[6]=1'b1
i2s_sdo	0	IO_I2Ssdo_ MMC1d2_GP IO1a4	GRF_GPIO1A_IOMUX[9:8]=2'b1
i2s_sdi	I	IO_I2Ssdi_ MMC1d3_GP IO1a5	GRF_GPIO1A_IOMUX[11:10]=2'b1

When GRF SOC CON1[5] is 1'b1, the IOMUX is as follow.

Module Pin	Direction	Pad Name	IOMUX Setting	
I2S				
i2s_clk	0	IO_I2S1mcl k_GPIO0b0	GRF_GPIO0B_IOMUX[0]=1'b1	
i2s_sclk	I/O	IO_I2S1sclk _SPIclkm_G PIO0b1	GRF_GPIO0B _IOMUX[3:2]=2'b01	

i2s_lrck_rx	I/O	IO_I2S1lrck rx_SPItxdm _GPIO0b3	GRF_GPIO0B _IOMUX[7:6]=2'b01
i2s_lrck_tx	I/O	IO_I2S1lrck tx_GPIO0b4	GRF_GPIO0B _IOMUX[8]=1'b1
i2s_sdo	0	IO_I2S1sdo _SPIrxdm_G PIO0b5	GRF_GPIO0B _IOMUX[11:10]=2'b1
i2s_sdi	I	IO_I2S1sdi_ SPIcsn0m_ GPIO0b6	GRF_GPIO0B _IOMUX[13:12]=1'b1

28.6 Application Notes

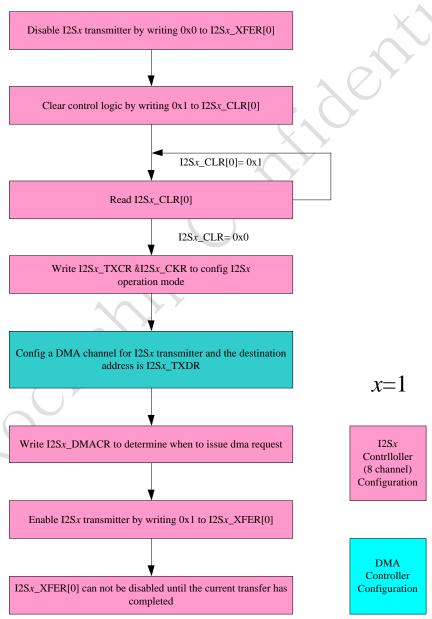


Fig.28-11I2S/PCM1/2 controller transmit operation flow chart

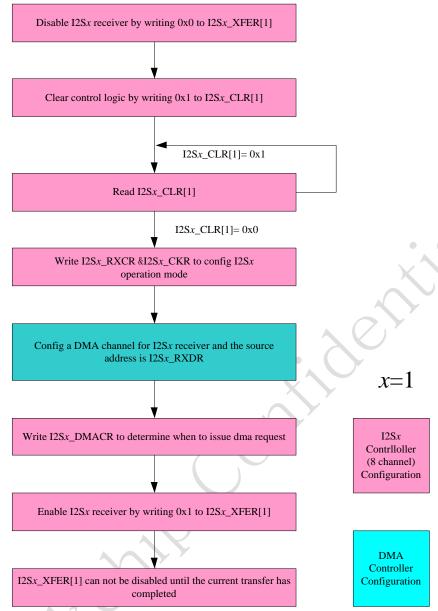


Fig.28-12I2S/PCM1/2 controller receive operation flow chart